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OPTIMAL SYNTHESIS IN THE PROBLEM OF IMPULSIVE CORRECTION OF MOTION* 

V.A. KORNEYEV 

A minimax problem of correcting the motion of a dynamic system acted Upon 

by perturbing forces of restricted magnitude is considered. The corrective 

action is carried out in the form of impulsive control,witha restriction 

on the total magnitude of the impulses and their number. This formulation 

models the problem of the impulsive correction of motion of an aircraft 

acted upon by external perturbations. The problem represents, in fact, 

a differentially-impulsive game /l/ in which the player controlling the 

correction aims to secure for himself a guaranteed minimum of the terminal 

functional. Following the methods used in /2/ we construct, for the 

problem with isotropic dynamics, an optimal synthesis of the correction 

instances. The present paper touches on the work done in /3-S/. 

Let us consider a controlled dynamic system whose motion in the time interval Ito, Tl is 

given by a differential vector equation with initial conditions 

2' = y, y' = EC + ZI, t (to) = 3". y (to) = ?Jo 0) 

Here 2, Y, u, u are vectors of the same dimensions. The controls u it) are realized 

impulsively, while the samples of the interference v (t) are assumed to be differentiable and 

to satisfy the following constraints: 

U (t) = 5 UR6 (t - $J, 'ogtl<...<t,<tNCl=T, luWl<i (2) 
k=1 

where 6(t) is the delta function and tlr . . . . tN are the instants of correction chosen either 

in advance, or during the motion. The quantity Q characterizes the sum of the possibilities 

of correction. We assume that the correction should ensure the minimum value of the quantity 

J=ls(UI (3) 

In the present paper we use the minimax (game theoretic) approach, and the corrective 

action s(t) is constructed under the assumption of the worst sample of the interference v(f). 

This method of corrective action is found from the condition min,max,J.Here the minimization 

is carried out over the realization of the noise v(t) belonging to the class of piecewise 
continuous functions observing the constraint of (2), and the minimization is carried out over 
the class of admissible synthesizing (positional) controls. 

Let us describe a class of admissible positional controls u. The current state of the 
system is described by the position (z', 9, t, k), where z' = (5, y), t E [to, T], k = 0, 1, . . ., .V and q is 
the total intensity summed over k allowed impulses satisfying the constraint ~cs[O, Qj. The 
positional control (synthesis) is specified in the fs',n,1) space by the signal surfaces fk 
separating the region in question of this space for every k = 1, . . .1 N into two sets GU and 
DR. and by the functions uk = uk (z', B. t). 1 ICY (t’, q. 1) I < 4. In the region Gk we have, by definition, 
uk(s',g, t)=O. The surface Fk belongs to the boundary of the closed set Dk. The set (I+,, F,), k = 
1 1.. .I N is the admissible synthesis and we shall denote it by u. 

Let us define the Bellman function Sk (z', 4, 0, k = 0, I,.... .v, z E E”, q E [U, VI, I e[t,,, Tj by 
the relations 

Sk (2'. q, t) = minu sup, /, S, (a’, q, t) = J f4) 
under the assumption that a minimum exists, The extrema in (4) are calculated over those 
parts of admissible syntheses and interference, which determine the motion from the position 

(s', 9, 1% k). 
Let us make the change of variables, r(t)= t(t)+{?'- f)~(t). Introducing a new independent 

variable t' by means of the relations T'- t’= CT- f)'/2. T’= TSi2 and determining the quantities 
uk’# Q' from the formulas Uk' = 1/.%+, k = 1, . . . . N,Q’= I/zQ, we find that problem (l)-(3) can be 
written in the form 
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(5) 

In deriving relations (5) we have taken into account the relation (2 (T' - Q,))" 6 (#' - ti') 2 
6(t-_i). Here and henceforth we shall omit, for simplicity, theprimes on the quantities T, t, 

tk, Ilk. 

It was shown in /2/ that the Bellman function in problem (5) can be written in the form 

Sk (1 2 1, 4, 7) = 1 2 1 (ph. (5, T,), Z = T - t, 5 = 5/ 12 1 

1 = 4 12 I-“‘. rPk (5, rl) = (1 + 8 Fk (? (1 + E)-“‘), k = 0, . ., A’ 

where Fkis a function of a single variable. The boundaries rh- and the functions Fh- are 
connected by recurrence relations. The values of the functions FK for known Fk-1, rk are 
given by the formulas 

Fk (‘l (1 T t)-“‘) = 5 (1 + t)-’ F&-l ((f3 - 1,/t, 

(5, T)) E ph., k = 1, . . ., N, p = j”Vl 

and the boundary rk is given, in turn, when Fk_1 is known, by the following differential 

equation: 
F&-l ((p - l)!j) + 5-1 I1 i 5 - PM $1 ((P - 1)/L) = 0 

The initial data for relations (7) and (8) have the form 

9 (0) = 1, k = 0, 1, . ., co, F, G 1, F1 (&-I" (1 + &"') = EJ(l + E), 

0656m, rr = ((5, ~1): 5"~ = 1) 

(6) 

(7) 

(8) 

Ku 

Fig.1 

and D,= ((E,~):?'Q< i), G, = ((hq): t”‘q >l). Using relations (7)-(g) we can determine, one after 

the other, F,, r,, F,. r3, . . ., Fk. rk+,. . . . After this the regions DC.&% become known. The 

quantities Sk are then determined by the relations (6) and the quantities UK are given by 

the formulas 

uk = -4~‘~~. (z, q. z) E Dk/D,, k = 1, . ., h’ 

Let us introduce the scalar variables Y,, Ya3 YS using the relations 

Y1 = 5-1, y, = nt-'/* - k-1, Y, = q (1 + &'I 

Relations (7)-(g) written in the variables YI, YZ have the form 

(10) 



Fk_, (yr) 
Pk(Y3) = T' (y1,yd E rk' 

I/1-t yz 
~a=-, k=i,...,N 
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Y, = Y, - 2 - 2Fk-1 (Y,)IF,_~ bn)v k = 2. . ., N w 
F,(O)- 1, k=O,l,...,oo, F,,s 1, 

O<Y1<? Pl = ((Y,, YI) : Yx Et 0, 0 d Y, d ml 

(13) 

Using relations (ll)-(13), we constructed numerically two families of curves, namely, 

graphs of the functions Fk(ys) and the boundaries Fk. The results of computations in terms of 

the variables Zl? Xl? 23, where ~a= ~1. ZP= Y, + y2, zQ= y, are shown, for some values of the par- 

ameter kinFigs. and 2. The variables zI,zp have an obvious meaning and are connected 

with the variables 121, z, p by the relations zl= lzl/r, zp= @I., The function 

is shown in Fig.1 and satisfies the limit relation F, = lim FI, as k-co. 

The lines Pk are shown in Fig.2 by solid lines, and the numbers on the lines correspond 

to the value of the index k. The broken line P_ = ((z~, zp) : z1 = 0, 0 < zr < 2) U ((I~, Zl) : z* = 221 + 2, 
OCZl<~Do) in Fig.2 satisfies the limit relation rm= iiii rk as k-m. The points of the set 

M = ((~1. 2%): =,>O lJzr>O) above the curves rk in Fig.2 form the regions &,and the sets DK 

consist of the points of the set M below the curves Fk and include rk. The dashed lines in 

Fig.2 show, for some values of the parameter k, the trajectories of motion of the point (rl,+) 

obtained as a result of the application of the correction algorithm described above, under 

the worst effect of the noise. The initial points of these trajectories are indicated by 

circles and the corresponding values of the parameter k are given next to them. 
The optimal synthesis for the case k=m is represented by the curve r_, which defines 

D-and G,. The special feature of the algorithm in this case consists of the fact that after 
the specified impulse one and the same line Pm is used as the signal curve. When the initial 

values of the parameters 11, 183 k satisfy the relations r,> z,+ 2, k= 00, the correction 

algorithm will differ from the algorithm obtained by passage to the limit (as N-W, /l/) 
in the programmed problem. The discrepancy can be explained by the excess of correction 
resource Q at which complete correction (I = 0) can be achieved using a number of different 

methods. 

Thus the solution of synthesis problem (5) in the case when the number N of instances 

at which the impulses are applied is specified, is determined by the values of two continuous 
parameters and the index k. The scalar quantities zl,zl can be used as the continuous par- 

ameters for problem (5). The synthesis for problem (5) was carried out by calculating the 

first instant tl* when the impulse is applied as the function 6 of the parameter 12 I, N. 
Q,fo. It was also assumed that z'=O, T= 1 and the value of the function 6 and the quantity 
Q were taken as two parameters of the game, determining the solution of the problem of syn- 
thesis for a given value of N. we can find from relations (5)-(7) and (10) that the functions 

%, (Q), shown in /l/ can be obtained from the curves in Fig.2 using the transformation 

Transforming 

resents the limit 

relation 

6 = 1 - (1 + z,)-I". Q = z, (1 + z,)-"t/2 (14) 
the curve I_ by means of (14), we can obtain the curve %, (0) which rep- 
position of the curves e,(Q) as N-m. The curve e,(Q) is given by the 

1. 

2. 

3. 

4. 
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